
Tractable Form of Non-Monotonic Reasoning to
Generate Belief Set

Dipanjan kumar Dey

Department of Computer Science & Engineering,

Assistant professor of Prajnanananda Institute of technology and management (PITM)
Dist-Kolkata, West Bengal (India)

1. ABSTRACT

Nonmonotonic reasoning is intended to apply specifically in
situation where the initial information is incomplete. The most
important property of traditional system is monotonicity, i.e.
addition of new facts to the database or to the theory does not
result in any previous fact being retracted. There does not
exist any inconsistency between the old statements and newly
added statements and is assume that situation do not change.
But in real world problem situation changes and so many new
assumptions are generated. A monotonic reasoning system
cannot work efficiently in real life environments because
information available is always incomplete. These problem
can be solved using nonmonotonic reasoning.
Nonmonotonic reasoning tend to be introduced proof
theoretically and little attention is paid to their semantic
characteristics or their computational tractability.
I present a different approach for construction of consistent
belief set using least fix point semantics, declarative semantics
and procedural semantics.
Keywords: Nonmonotonic Reasoning, Fixpoint, Disposition,
Extended Herbrand Base, Resolution,least fix point semantics,
declarative semantics and procedural semantics.

2. INTRODUCTION
Development of tractable form of nonmonotonic reasoning
to generate belief set from a database which is a
combination of disposition and proposition.
Classical logic was developed for mathematical
formalisation of human reasoning. One of the major aspects
of classical logic is its monotonicity property, which tells,
if a formula P is derivable from a set of premises Q, then P
is also derivable from each superset of Q. However, human
commonsense is frequently nonmonotonic, i.e. in many
cases conclusion, drawn on the basis of present knowledge,
is given up in the light of further information. For instance,
we know that birds can fly. Given the information that
Tweety is a bird, we conclude that or common people will
understand that Tweety flies. Now if we get further
information about Tweety, it is not necessary that Tweety
should fly because or a variety of reasons that Tweety is a
penguin,Tweety’swings are broken,Tweety is too weak to
fly,Tweetyis in caged, then we have to withdraw our
previous conclusion and revise it by saying that Tweety
doesn’t fly. Most importantly, this belief revision is done
without invalidating any of our premises. This form of
logic, that allows us to invalidate our old conclusions are
called ‘Nonmonotonic’ logic and it’s more suitable in the
field of commonsense reasoning than its monotonic
counterpart.

Non-monotonic reasoning systems are more complex than
monotonic reasoning systems. Monotonic reasoning
systems generally do not provide facilities for altering
facts, deleting rules because it will have an adverse effect
on the reasoning process.

3. MCDERMOTT AND DOYLE APPROACH

McDermott and Doyle [12, 13] proposed that,
nonmonotonic logic (NML) must consider not only the
classical derivability of formulas but also the consistency of
formulas for drawing inferences. The concept can be
explained with a simple example [5]:
German typically drinks bear
which can be syntactically represented as follows: ∀. German(x) Λ MDrink_Beer (x) ⊃Drinks_Beer(x).
i.e. if x is a German and it is consistent to assume that x
drinks beer then x drinks beer. The modal operator ‘M’ is
used to represent consistency. For any predicate p, Mp
stands for ‘it is consistent to assume that p’ and it is defined
as

If p is not derivable from given premises then infer Mp.
This ‘M’ operator bears the essence of nonmonotonicity.
Based on this concept McDermott and Doyle illustrated the
proof-theoretic procedure for constructing fixed point or
belief set from a given set of premises.
In Autoepistemic Logic (AEL) Moore [14], instead of
considering the consistency of formulas, tried to formalise
the reasoning of an ideal agent having both positive and
negative introspective capabilities. This means that the
agent knows that he knows p, whenever he knows p and he
knows that he doesn’t know p, whenever he doesn’t know
p.
In AEL the statement ‘German typically drinks beer’ is
represented as, ∀. German(x) Λ L Drinks_Beer(x) ⊃Drinks_Beer(x).
Where, ‘L’ is read as “it’s believed that”. In other words M
in NML is replaced by L in AEL. Based on this concept
Moore also calculated the proof-theoretic fixpoint.

3.1 Limitations of McDermott and Doyle approach
McDermott and Doyle’s Nonmonotonic Logic does not
fully capture the notion of consistency even though it is
based on the modal operator M which denotes “is
consistent”. Consider the theory T4 has only one fixed
point containing ¬p. But {¬Mp} is inconsistent as it does
not have any fixed point. Adding Mp to any set of formulae
renders the set inconsistent, so a set containing Mp cannot
be a fixed point, but ¬p is not derivable with any other

Dipanjan kumar Dey / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1630-1637

www.ijcsit.com 1630

assumptions besides Mp.For example, If the following
assertions are introduced: the following fixed – point can
be proved: If the following axiom is addedthen cannot be
proven. It is seen that is consistent with a theory and it is
false, that is, is not inconsistent with . So, Nonmonotonic
Logic is inconsistent.

4.DISPOSITION
Definition 4.1: A disposition is a proposition that is
preponderantly but not necessarily always true.
The disposition are usually interpreted as ‘if p, then q’ for
example
the disposition ‘Birds fly’.
 It is interpreted as
 if x is a bird then x flies
Formally this can be written as:
() ∀x (usually) Fly(x) ←Bird(x).
We characterize dispositions by means of two sets: (i). the
usual set and (ii). the exception set. The usual set
corresponding to a disposition consists of the elements that
satisfy the isposition, i.e elements for which the disposition
manifests itself. The exception set contains the elements for
which the disposition doesn’t hold. These elements are the
cause of nonmonotonicity. The rest of the literature for
simplicity. This clause is to be called dispositional clause.

4.1 Inference Rule for Dispositions:
The modus ponens rule that is used in first order logic is
also valid for dispositions. This inference rule is called
dispositional modus ponens.
Given the clauses
1. (usually) Fly(x) ←Bird(x)
and 2. Bird (Tweety)
we get 3. (usually) Fly (Tweety).
In the above example the clause 1 is a disposition. Next
Bird (Tweety) (in 2.) is a ground atomic formula. Using
dispositional modus ponens on these two formulas we get
another disposition (usually) Fly (Tweety), which can be
represented as Tweety Flies(d). This disposition doesn’t
contain any free variable. Thus we refer to this kind of
dispositions as dispositional ground atoms. Thus it’s
evident that by dispositional modus ponens we get another
disposition or more precisely a dispositional ground atom.
This dispositional ground atom can be considered as
dispositional fact, in analogy to the facts in predicate logic.

5. PROPOSITION
Propositional logic is the simplest logic_illustrates basic
ideas using propositions
P1 , Birds fly
P2 , Today it is raining
P3 , This automated reasoning course is boring Pi is an
atom or atomic formula
Each Pi can be either true or false but never both.
The values true or false assigned to each proposition is
called truth value of the proposition

6. LIMITATION OF MONOTONIC SYSTEM
Logic base system are monotonic in nature i.e., if a
proposition is made which is true, it remains true under all
circumstances. All theorems are proved by this

methodology only but in real life world problem situations
changes and new assumptions are generated. That all
statements made do not necessary mean that they are
correct under all circumstances.
Whenever we make a statement, we do not make it in a ad
hoc fashion. The statement is made by manipulating a set
of beliefs. Experts predict, diagnose and perform majority
of their mental activity by relying on their beliefs. It is
possible that during the course of action, events may take
place which can either enhance the beliefs or reduce the
dependency on the beliefs already existing.
This problem can be solved using non-monotonic
reasoning. A monotonic reasoning system can not work
effectively in real life environment because

• Information available always incomplete
• As process goes by, situations change and so are

the solutions.
• Default assumptions are made in order to reduce

the search time and for quick arrival of solutions.

7.BASIC CONCEPTS OF NON-MONOTONIC REASONING

SYSTEMS
To understand this let us take an example , if we say that
Rohini is a bird, the conclusion that is arrived at (default) is
that Rohini can fly. But on the other hand, it is not
necessary that Rohini should fly becauseor a variety of
reasons similar to those given below :

• Rohini could be an Ostrich.
• Rohini’s wings are broken.
• Rohini is too weak to fly.
• Rohini could be caged.
• Rohini could be a dead bird etc.

As one makes a statement like Rohini is a bird, people
assume that it can fly. If another statement like Rohini in an
ostrich , people retract the assumptions that were made.
Lot of day to day activities involve such instances wherein
assumptions that have been made are forced to be
withdrawn by the occurrence of an event or by getting a
new piece of information.
Why do humans make such assumptions as done in Rohini
example. The reason could be that they identify such
statements with the most likely characteristics of the object
under consideration. Based on the most likely
characteristics one can make some statements like the
following:

• Indian Railway maintain punctuality.
• Indian Airlines regularly operate their flights.
• Letters are delivered in time.
• Telephones are working properly and no cross-

talks.

8.PREDICATE
A relation that binds two atoms together for example Ram
likes aeroplanes. Here like is predicate and two atoms Ram
and aeroplanes. Symbolically predicate-like (Ram,
aeroplane)

9. FACTS
A facts must start with a predicate (which is an atom and
ends with a fullstop.)

Dipanjan kumar Dey / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1630-1637

www.ijcsit.com 1631

10.RULES
A rules is a predicate expression that uses Logical
implication () to describe a Relationship among facts.
For example
 A= {Fly(x) ← Bird(x),
 Bird (Tweety) ←
 Bird(x) ← Penguin(x),
 Give _egg(x)← Bird(x)
 Penguin (Fred) ←

 Fly(x) ←Penguin(x), }
 Here basically two facts
1 .Bird (Tweety)
2. Penguin (Fred)

 And four types of rules:--
1. Bird(x) ←Penguin(x)
2. Gives_egg(x)← Bird(x)
3. Fly(x) ← Penguin(x)
4. Fly(x) ← Bird(x)

11.BELIEF SET :
This is usually a set of beliefs which justify their action.
Belief set = Proposition + Disposition
Belief set is a subset of ground attom.

12. HERBRAND’S APPROACH:-
A very important approach to mechanical theorem proving
was given by Herbrand in 1930.By definition; a valid
formula is that is true under all interpretations. Herbrand
developed an algorithm to find interpretations that can
falsify a given formula, that is, instead of proving a formula
is valid, they prove that the negation of the formula is
inconsistent.

13. RESOLUTION

The resolution Principle is “Given any two clauses A and
B, if there is a literal P1 in A which has a complementary
literal P2 in B, delete P1 and P2 from A and B and
construct a disjunction of the remaining clauses. The clause
so constructed is called the resolvent of A and B.”
 For example, consider the following clauses
 A : P V Q V R
 B : ~P V Q V R
 C : ~Q V R
Clauses A has the literal P which is complementary to ~P
in B. Hence both of them are deleted and a resolvent(
disjunction of A and B after the complementary clauses are
removed) is generated. That resolvent has again a literal Q
whose negation is available in C. Hence resolving those
two, one has the final resolvent.
A : P V Q V R (given in the problem)
B : ~P V Q V R (given in the problem)
D : Q V R (resolvent of A and B)
C : ~Q V R (given in the problem)
E : R (resolvent of C and D)

It is possible to picturise the path of the problem using a
deduction tree.

14. BASIC CONCEPT OF DEDUCTIVE DATABASES
A deductive database may be defined as a triple DB =
<C, P, I>. C is a finite set of nonlogical symbols
(constant and predicate) that define a specific first-order
language. It is assumed that C has at least one constant
symbol and at least one predicate symbol. P consists of
a finite set of axioms in the language and may contain
metarules (that is, rules not expressible in the language)
as well. I is afinite set of sentences in the language, the
integrity constraints, that must be satisfied by the
database. Updates to the database typically involve P
only; the updated database must still satisfy I.

15. RELATIONAL DATABASES
Relational databases are a special case of deductive
databases that do not allow deductive rules. In this
case, P consists of ground atomic formulas only. These
formulas represent database facts: tuples in relations (rows
in database tables). Practical examples of relational
databases are numerous and books on databases contain
many examples. Some typical relations include
Supplier, Part, Employee, and Department, with
appropriate tuples, such as the 4-tuple <Jones H., 31,
secretary, 19000> in the Employee relation, indicating an
employee's name, age,title, and salary. No specific example
will be given here. The following abstract example is used
for illustration.
Example 1 A relational database
C contains the constants a 1 , a2, a3, a4, a5, a6, a7, a8, the
unary predicate symbol R1, the binary predicate symbol
R2, and the ternary predicate symbol R3.
P contains
R1(al)
R1(a2)
R2(al , a3)
R2(a2, a4)
R3(a1, a5, a7,)

R3(a2, a3, a4)
R3(a8,a l , a7)
The tables in the corresponding relational database are R1
with the elements al and a2, R2 with the pairs <a1, a3>and
<a2, a4)', and R3 with the triples <a1, as, a7>, <a2, a3,
a4)', and <a8, a l , a7) ' .
Consider now the following queries:
1.1 R1(x) (Find the x's for which 'the relation R1(x) is
true.)

Dipanjan kumar Dey / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1630-1637

www.ijcsit.com 1632

There are two answers: al and a2, since R1(a,) and
R1(a2) are facts.
1.2 R2(x1 , X2), R3(X1, X3, X2)

There is one answer: <a2, a4, a3>, since R2(a2,
a4) and R3(a2, a4, a3) are facts.
1.3 R1(a3)
The answer is No, since R1(a3) is not a fact.
Relational databases are the simplest in the classification.
Such theories are very important because of the
prominence of commercially available relational database
systems, and the development of many sophisticated
concepts, both theoretical and applied, for relational
databases(Ullman, 1988). While only facts can be
represented directly in relational databases, Horn
databasesallow for the representation of both facts and
rules. This yields a significant advantage in
expressivepower, as rules provide a concise way of
expressing knowledge and are particularly useful in know-
ledge based systems.

16. HORN DATABASES

It is the combination of facts and rules.
For Example, as in above example of facts & rules A is an
Horn Database.
In a Horn database, P consists of formulas of the form B
Al, ...,A. where B, Al, ..., A,,, are atoms (n may be 0). The
non-atomic Horn formulas represent database rules. These
rules constitute the deductive part of the database. Horn
databases in the sense of this paper, that is, function-free,
are also referred to as DATALOG programs (Ullman,
1988).
An example of a Horn database is the example involving
family relationships. The predicate parent isgiven in the
form of ground atoms,such as parent(mary,jim)•-. Horn
definitions can then be given to define concepts such as
grandparent and ancestor.
grandparent(x,y) parent(x,z),parent(z,y)
ancestor(x,y) F-- parent(x,y)
ancestor(x,y) parent(x,z),ancestor(z,y).
In words, a grandparent is a parent of a parent; an
ancestor is either a parent or an ancestor of a parent. A
definition such as the one for ancestor is called recursive
because it appears both on the left and right hand side, that
is, ancestor is defined partially in terms of itself.
The following abstract example is an illustration of Horn
databases.
Example 2 A Horn database
C contains the constants al, a2, a3, a4, a5, a6, a7, a8, the
binary predicate symbols R1, R2, and the ternary predicate
symbol R3
P contains
RI (al,a3) ←
RI (a3,a4)←
R1 (a4, a6) ←
R2 (x, y) ←R1(x, y)
R2(x, y)←RI(x, z), R2(z, y)
R3(al , a2, a3)←
R3(x, y, z)←R1(x, y), R2(y, z).
Note that R2 has a recursive definition and that the contents
of R3 are described in terms of a fact and rule. To make

the example more meaningful, one may think of R1 as
the parent predicate,R2 as the ancestor predicate, and R3 as
a ternary predicate that is a special combination of parent
and ancestor.
Consider now the following queries.
2.1 ←R2(x, y)
There are six answers: <al, a3>, <a3, a4>, <a1, a4>, <a4,
a6>, <a3, a6>, <a1, a6>

.2.2 f -
2.2 ←R3(a1, x, y)
There are three answers: <a2, a3>, <a3, a4>, <a3, a6>

.
2.3 ←R2(a2, x), R1(x, y)
There is no answer.

17. DECLARATIVE, FIXPOINT, AND PROCEDURAL

SEMANTICS
Semantics deals with meaning, a relational database
and a Horn database. For each database, several
questions, along with answers, were given. The
answers appear to be correct intuitively. In this section
a more formal approach is taken to determine the
meaning of a deductive database and the correctness
of an answer to a query. Three standard semantics are
discussed: declarative, fixpoint, and procedural. The
main result of this section is that these differently
defined semantics yield identical results for Horn
databases. The theorems of this section come from van
Emden and Kowalski (1976).
17.1 Declarative semantics for Horn databases
Declarative semantics is based on interpretations, as
discussed in section 1. Within the framework of the
basic axioms given in the previous section, the domain
of every model must contain a distinct element for
each constant symbol. But in logic programming in
general, or if some of the basic axioms are not
included, there may be many different domains for a
theory. There is one domain thatisparticularly useful.
The Herbrand universe for a set of formulas (axioms) is
the set of all symbolsbuilt up using the constant
symbols (and function symbols, if any). An
interpretation whose domainis the Herbrand universe is
calleda Herbrand interpretation. A
Herbrandinterpretationfor a set of sentences which is
also a model (that is, in which the sentences are all
true) is called a Herbrandmodel. In logic programming
the Herbrand universe may be infinite because of a
function symbol or infinitely many constant symbols.
Using the definition of a deductive database from
section 2 including the basic axioms, all models are
Herbrand models modulo renaming the elements of the
domain.
Another useful concept is the notion of a
Herbrandbase, HBc: the set of all ground atomic
formulas that can be formed using C. HBcmay also be
thought of as the set of all possible facts about the
database. For a deductive database, with a finite set of
constants and predicates, the Herbrand base is finite.
The Herbrand base is always a Herbrand model for a Horn
database, because it satisfies the axioms of P including the
fundamental axioms. However, the Herbrand base is
usually not the intended model: it is too big. In general, we

Dipanjan kumar Dey / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1630-1637

www.ijcsit.com 1633

do not intend all possible facts to be true. The idea is to
look for small subsets of the Herbrand base that are
Herbrand models, in order to make the least number of
assumptions concerning what is true in the database.
Theorem 2 will justify this restriction.
For Horn databases there is a unique smallest Herbrand
model, the minimal model, by the following theorem.
Thorem 1 (van Emden and Kowalski, 1976). The
intersection of every (non-empty) set of Herbrand models
for a Horn database is a Herbrand model.
Hence it suffices to take the intersection of all Herbrand
models,MP, to obtain the intended meaning of the
deductive database. The following theorem provides an
important property of M p
Theorem 2 (van Emden and Kowalski, 1976). For a Horn
database, Mp = {A€HBc│P ╞ A}.
This theorem states that the minimal model contains
exactly the atoms logically implied by P. Now consider
Example 1. For this case,
MP = {RI(al), R1(a2), R2(a1,a3), R2(a2,a4),R3(a1,a5, a7),
R3(a2, a5, a4), R3(a8, al, a7)}

.
In general, for a relational database, Mprepresents exactly
the rows in the tables. Now consider the queries 1.1-1.3.
Assuming that Mpis the intended meaning of the database,
the answers are constants whose substitutions make the
queries true in M . For instance, considering 1.1, Mpk
R1(al) and Mp R1(a2), but for any other constant c e C, it is
not the case that Mpk R1(c). Hence the answers are al and
as.
Next, consider Example 2. In this case,
Mp = {R1(al, a3), RI (a3, a4) R1(a4,a6), R2(al, a3),
R2(a3, a4), R2(a4, a6), R2(a1,a4), R2(a1,a6), R2(a3, a6),
R3(a1, a5, a3), R3(a1, a5, a4), R3(a1, a5, a6)).
So, for 2.2, Mp╞R3(al, a2,a3) & R3(al, a5, a4) & R3(a1, a5,
a6), but for any other constants c1, c2,it is not the case that
Mp╞R3(al, c1, c2). That is how the three answers are
obtained.

17.2 Fixpoint semantics for Horn databases
The second type of semantics is called fixpoint semantics.
This type of semantics involves the building of the
intended Herbrand model in a step-by-step process using
Herbrand interpretations. The starting point is the empty
set. At each step the rules of the database imply the addition
of new atoms to the existing Herbrand interpretation. For
instance, if A1, ...,An are in a Herbrand interpretation of P
and A ←A 1, ..., An is a clause in P, then A should be
added to the Herbrand interpretation to obtain a new
Herbrand interpretation. When no more additions are
needed, a fixpoint is reached. Such a fixpoint is a
Herbrand model and the goal of fixpoint semantics is to
compute the smallest fixpoint as the intended Herbrand
model.
The general concepts involve the mathematical theory of
lattices. A lattice is a set with a partial ordering
(essentially a less than or equal to: ≤) relation. For a lattice
L and a set X ⊆ L, a € L is called anupper bound of X if x
≤a for all x € X. Aleast upper bound a is anupper bound
such thataa' for all upper bounds a'. If the least upper
bound of X exists, it must be unique and is denoted

bylub(X). The notions oflower bound and greatest lower
bound is defined in a similar but opposite manner. A lattice
L is called complete if lub(X) and glb(X) exist for every
subset X of L.
The set of all subsets of a set S is called thepower set of S
and is written as 2s. For the applicationto database semantics
the set S should be thought of asHBc, the Herbrand base.
Then 2s is the set of all Herbrand interpretations. Under the
subset relation 2sis known to be a complete lattice with
lub(X) = u Si {Si € X} and gib(X) = ∩ Si {Si E X}. The
top element is S and the bottom element is Ø(the empty
set).-The crucial aspect of the theory involves properties of
transformations between Herbrand interpretations; these
are mappings from 2s to 2s in the present setup. A mapping
T: 2s - 2s ismonotonic if for elements I, J of the lattice I⊆
J implies T(I)⊆ T(J), and continuous if T(lub(X)) =
lub(T(X)) for every directed subset X of 2s. (A subset of L
is directed if it contains an upper bound for every finite
subset.)
The powers of a monotonic mapping T are defined as
follows:
T ↑ 0 = Ø (The 0th power of T is the empty set.)
T ↑T i + 1 = T(T ↑T i) (The next power of T is
obtained by applying T to the previous power.)
T ↑T ω= lub{T↑ T i ii<ω) (The Goth power of T is
obtained by taking the lub of all finite powers.)
An elementI €2sis calleda fixpoint of T if T(I) = I, that is, T
does not change I. The least fixpoint of T is written as
lfp(T), and is defined as the fixpoint which is a subset of
every fixpoint. In general, lfp(T) need not exist. The
following two results are well-known about lattices (see
Lloyd, 1987)):
(1) If T is monotonic, then lfp(T) exists.
(2)If T is continuous, then lfp(T) = T Tω
As mentioned earlier, the connection between monotonic
mappings on a power set and deductivedatabases is
obtained by letting S =HBc, the Herbrand base, in which
case 2s is the set of Herbrandinterpretations. The mapping is
usually referred to asTP, where P is the program, which, in
this case, is the set of non basic axioms of P.
For a Herbrand interpretation I,
TP(I) = {A €HBcI A ← Al, ..., An is a ground
instance of a clause in P and {A1, ..., A„} ⊆I}.
Tp(I) contains all immediate consequences of the rules of P
applied to I. The following theorem is a crucial result.
Theorem 3 (van Emden and Kowalski, 1976). If the
clauses of P are Horn then TP is continuous.
Theorem 3 and Result (2) above imply that lfp(TP) =Tp↑ω.
Fixpoint semantics picks lfp(Tp) as the meaning of P. The
following computations yield TP↑ω for the two examples
given in the previous section.
For Example 1,
TP↑0=Ø
TP↑1 = TP(TP↑ 0) = {R1(al), R1(a2), R2(a1, a3), R2(a2, a4),
R3(al,a5, a7),R3(a2, a3, a4), R3(a6, al, a7)}
TP↑ n = T P↑ 1 for all n≥ 1
TP↑ω=lub{TP↑ i I i <ω} = TP↑1.
For Example 2,
TP↑O=Ø

Dipanjan kumar Dey / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1630-1637

www.ijcsit.com 1634

TP↑1 = TP(TP↑0) = {R1(a1, a3), R1(a3, a4), R1(a4, a6), R3(al,
a2, a3)}
TP↑2 = TP(TP↑ 1) = TP↑ 1 ᴜ{{R2(al,a3), R2(a3,a4),
R2(a4,a6)}
TP↑3 = TP(TP↑2) = TP↑ 2 ᴜ (R2(ai , a4), R2(a3, a6), R3(al, a3,
a4), R3(a3, a4, a6)}
TP↑ 4 = TP(TP↑3) =TP↑3 ᴜ {R2(al, a6), R3(al, a3, a6)}
TP↑ n = T P↑4 for all n ≥
TP↑ω= l u b { T P↑ i │ i < ω } = T P↑4.
Note that in both cases,T p ↑ω=MP. In fact, the following
theorem shows the equivalence of the declarative and
fixpoint semantics.

Figure 1

Theorem 4 (van Emden and Kowalski, 1976). For a
Horn database, TpT to = M .
17.3 Procedural semantics for Horn databases
The third type of semantics, procedural semantics,
refers to a computational method for obtaining the
meaning of a deductive database. For Horn databases
SLD-resolution is used as procedural semantics. In an
SLD-refutation, a Horn database P and a goal (clause
of the form ←B1, ...,Bm) are given. An SLD-derivation
starts with the goal clause as the top clause that is
resolved in a linear manner with clauses in P (each
clause of P is given new variables not previously used
in the derivation). An atom in the present goal,B;, is
selected, and a clause in P is chosen whose head
canunify withB; by a substitution; the new goal is
obtained by replacingB, with the body of the clauseafter
applying the substitution required for the unification. An
SLD-refutation is an SLD-derivation that ends with the
empty clause: ← (also written as []).
The success set of P, Succ(P), is defined as the set of
all A e HBcsuch that P ∪{ ← A} has an SLD-refutation.
In Example 1 it is easy to see that A can be in Succ(P) if
and only if it is an axiom. Now consider Example 2 and

take the atom R2(al, a6). Figure 1 is an SLD-resolution
which shows that R2(al, a6) €Succ(P).
The following theorem shows the connection between
thedeclarative and procedural semantics.
Theorem 5 (van Emden and Kowalski, 1976). For a
Horn database (using SLD-refutation) Mp = Succ(P).
Theorem 6 follows from Theorems 4 and 5.
Theorem 6 (van Emden and Kowalski, 1976). For a
deductive Horn database Mp= Tp↑ω= Succ(P).

18. ILLUSTRATION 1
Let the given theory be
 A= { Fly(x) ← Bird(x),
 Bird (Tweety) ←
 Bird(x) ← Penguin(x),
 Give _egg(x)← Bird(x)
 Penguin (Fred) ←
 Fly(x) ←Penguin(x), }
 Can Tweety fly? Write the success set.
Solution: ----
From the given problem, we have
~ Bird(x) ν Fly(x)
~ Penguin(x) ν Bird(x)
~ Bird(x) ν Gives_egg(x)
~ Penguin(x) ν Fly(x)
Bird(Tweety)
Penguin(Fred)
The ground atoms are
{ Bird(Tweety)
Fly(Tweety)
Penguin(Tweety)
Gives_egg(Tweety)
~ Fly(Tweety)
Penguin(Fred)
Bird(Fred)
Gives_egg(Fred)
~ Fly(Fred)
Fly(Fred) }
Using resolution principle, we have

Therefore Tweety can Fly
Success set :- { Bird(x), Fly(x), ~ Fly(x) }
Note : Success Set is a subset of ground atom. Constant function-
Tweety, Fred.

19.ILLUSTRATION 2
Let the given theory be
 A= { Fly(x) ← Bird(x),
 Bird (Tweety) ←
 Bird(x) ← Penguin(x),
 Give _egg(x)← Bird(x)

Dipanjan kumar Dey / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1630-1637

www.ijcsit.com 1635

 Penguin (Fred) ←
 Fly(x) ←Penguin(x), }
Find the belief set
 using least fix point semantics,
Using Declarative semantics
Using procedural semantics
Solution: ----
19.1 Using least fix point semantics to generate belief set
Now here basically two facts
1 .Bird (Tweety)
2. Penguin (Fred)
 And four types of rules:--
 1. Bird(x) ←Penguin(x)
 2. Gives_egg(x)← Bird(x)
3. Fly(x) ← Penguin(x)
4. Fly(x) ← Bird(x)
The powers of a monotonic mapping T are defined as
follows:
 Tp 0 = Ø
Tp ↑ 1 = Tp (Tp 0) = {Bird (Tweety), Penguin (Fred)}
 Tp ↑ 2 = Tp (Tp ↑ 1) = (Tp ↑ 1) U {
Fly (Tweety), Give _egg (Tweety) }
 Tp ↑ n = Tp ↑ 2 for all n>= 2
Tp ↑ w = lub{ Tp ↑ i | i < w } = Tp ↑ 2
Now the belief set is
 {Bird (Tweety), Penguin (Fred) Fly (Tweety), Give _egg
(Tweety) }

19.2 Using Declarative semantics to generate belief set
Declarative semantics is based on interpretation. Now in
case of declarative semantics we use herbrand model for a
horn database. But hebrand model is too big. In general all
the possible facts are true. the idea is to look for small
subsets of the herbrand base that are herbrand model in
order to make the least no of assumption concerning what
is true in the database .
 Now according to theorem -1(van emden & kowaski
1976) the Intersection of every set of hebrand model
(denoted by MP) for a horn database is a hebrand model
So MP obtain intended meaning of the deductive database .
Now according to theorem -2 (van emden & kowaski 1976)

MP ={ A € HBc | p╞ A }
States that minimum model contains exactly the
atoms logically implied by P. Where P are all the
axioms.
Now for the above example all the atoms are –
[Bird (Tweety), Penguin (Fred),Fly (Tweety),Give _egg
(Tweety)]
So according to this theorem and using declarative
semantics we can conclude that belief states for this
example is-
 [Bird (Tweety), Penguin (Fred) Fly (Tweety), Give
_egg (Tweety)]

19.3 Using procedural semantics to generate belief set
Procedural semantics refer to the method for obtaining
meaning of a deductive database. Resolution principal is
used in this process .For horn database SLD resolution is
used as procedural semantics. In an SLD refutation a horn
database P and a clause (of the form M1,

M2………….Mn) are given .An SLD refutation that ends
with empty clause: (may written as []) The success
set of P, Succ(p) is the set of all A € HBc such that P U
{ A}Has an SLD refutation
Now according to theorem -5, 6 (van emden & kowaski
1976) ---for a horn database (using SLD refutation) MP
= Succ(p) and for a deductive horn database MP =Succ(p)
= Tp ↑ w
These rules ensure that after using procedural semantics
procedure outcome belief set is same as declarative and fix
point semantics for the same example.

Now there is no need to apply SLD refutation to reach our
desired goals and also there is a two constant clause
[enguin (Fred) , Bird (Tweety),] which have no use in any
other SLD refutation to fulfill our purpose . so this two
clause normally included as a constant term in a belief set .
So after apply SLD refutation or using procedural
semantics we get new belief set which is - [Bird (Tweety),
Penguin (Fred) Fly (Tweety), Give _egg (Tweety)
 So output belief set is - [Bird (Tweety), Penguin (Fred)
Fly (Tweety), Give _egg (Tweety)]
Theorem 7 (van Emden and Kowalski, 1976). For a Horn
database the declarative, fixpoint, and procedural semantics
provide identical answers to queries.
i.e. For the Illustration 2 using the declarative, fixpoint, and
procedural semantics provide identical answers to generate
belief set and the belief set is - [Bird (Tweety), Penguin
(Fred) Fly (Tweety), Give _egg (Tweety)]

20. CONCLUSION
Thus for a Horn database the declarative, fixpoint, and
procedural semantics provide identical answers to queries.
i.e. For the Illustration 2 using the declarative, fixpoint, and
procedural semantics provide identical answers to generate
belief set. We can conclude that belief sets for this
illustration 2 is
 [Bird (Tweety), Penguin (Fred) Fly (Tweety), Give _egg
(Tweety)]

21.APPLICATION / USES
My thesis can be applied on the following real life problem

1. Railway maintain punctuality
2. Airlines regularly operate their flight
3. Letters are delivered in time
4. Telephones work properly and no crosstalk

Dipanjan kumar Dey / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1630-1637

www.ijcsit.com 1636

5. In short, human life in itself is governed by
principles of nonmonotonicity.

The consistent belief set is shown to contain the same
information as those obtained by the other well established
techniques. Though, unlike those, the belief set constructed
in this work is capable to handle the fuzziness of real
world. I’ve also proposed a procedural semantics for the
logic program containing propositions as well as
dispositions and proved its soundness and completeness
with respect to the unique consistent belief set.

REFERENCES:
1. G. Brewka, Non-monotonic Reasoning Logical Foundations of

Commonsense, Cambridge University Press, 1991.
2. M. Gelfond, V. Lifschitz, The Stable Model Semantics for the Logic

Programming, In fifth Int’l Conf. Symp. On Logic 3. Programming,
pp 1070-1080, Seattle, 1988.

4. J. McCarthy, Circumscription-A Form of Nonmonotonic Reasoning,
artificial Intelligence, Vol 13, pp 27-39,1980.

5. D. McDermott, J. Doyle, Non-Monotonic Logic 1, A.I. Memo 1979,
Massachusetts Institute of Technology, Artificial Intelligence
Laboratory 1979.

6. D. McDermott, Nonmonotonic Logic II, J. ACM, Vol 29, No 1, pp
33-57, 1982.

7. R. Moore, Semantical Considerations of on Nonmonotonic Logic,
Artificial Intelligence, Vol 25, pp 75-94, 1985.

8. R. Reiter, A Logic for Default Reasoning, Artificial Intelligence, Vol
13, pp 81-132, 1980.

9. A. Tarski, A Lattice-theoretical Fixpoint Theorem and Its
Application, Pacific J. Math. 5 (1955), 285-309.

10. T. Weigert, J. J. P. Tsai , A Computationally Tractable
Nonmonotonic Logic, IEEE Transactions on Knowledge and Data
Engineering, Vol 6, No 1, February 1994

Dipanjan kumar Dey / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1630-1637

www.ijcsit.com 1637

